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this generalization. The ratio of ionic radii Yb¥/Ca®

is 0.95. The R, coefficient for Yb* in CaWO, is much

smaller than any of the other electric shift parameters

observed in this series of experiments and is within a

factor of 2 of the value calculated for the electronic effect.
UThe crystal field terms V@ are often expressed as

A2 Y6, @), where Y 3(9, @) are the conventional nor-

malized spherical harmonics. In recent years, many

papers on this subject use the related harmonic

(6, ) =[(2K +1)/4n1/2 ¥ 3(6, @),
hence
V@=B3C6, ¢)=[4n/(2K +1)]/2 A% CR(6, ).

We shall use the C harmonic in this paper. When
B,? is a term induced by the applied electric field, we
will use the lower-case symbol b?g to conform to Ref. 1.
151t ig still essential, however, that the undisplaced
ion should be at a site which lacks inversion symmetry.
If this is not so, the new even-field terms willbe quadratic
in the displacement =,
1%In the case of a linear chain, if the force constant is
k, the restoring force is proportional to 2k. (In Ref. 1,
we set 8=2k.) This duplicity of notation seems to be
extravagant and we will define & as the restoving force
throughout this paper.
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'other parameters of less importance here are “p,”
the hardness parameter, and B,., a charge distribution
parameter, as presented in the treatment of the Born
model by Mario Tosi, in Solid State Physics, Vol. 1b,
edited by H. Ehrenreich, F. Seitz, and D, Turnbull
(Academic, New York, 1965), p. 1.

BCharles Kittel, Intvoduction to Solid State Physics,
2nd ed. (Wiley, New York, 1956), p. 167.

We use moduli | BI?C,‘?l instead of the actual combina-
tions B)%C % + B;{QC;(Q, etc., in order to obtain estimates
of the magnitudes R, and R,. The phases of the spherical
harmonics determine ¢, and ¢,.

A, R. Edmonds, Angular Momentum in Quantum Me-
chanics (Princeton U. P., Princeton, N, J., 1959).

217, Kiel, Phys. Rev. 148, 247 (1966).

21t §s important to note that interaction assumed in
perturbation A [Fig. (a)] is intended primarily
to be representative of the types of perturbations leading
to the D term in Mn% : SrWO,. Another sequence of ma-
trix elements, which is particularly appropriate to nearly
cubic crystals, is described in R. R. Sharma, T. P, Das,
and R. Orbach, Phys. Rev. 149, 257 (1966). The exact
form is immaterial, however, since we use the observed
x=D/Bj[see discussion leading to Eq. (5)], which should
be independent of which perturbation term dominates.
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For lattice-directed trajectories, the Fourier spectrum of the interaction between an ener-
getic (2 10°eV) B particle and the lattice atoms is different from the Fourier spectrum of the
interaction with randomly distributed target atoms by significant terms of frequencies near

(sv/2a).

Here s is an integer, v is the velocity of the B particle parallel to the low-index

crystallographic direction, and 2a is the interatomic spacing in this low-index direction in
the reference frame of the 8 particle. It is suggested that these frequencies will dominate
the brehmsstrahlung spectrum of an energetic 8 particle traversing a single crystal in a lat-

tice-directed trajectory.
perturbation theory.

I[. INTRODUCTION

During the last decade, appreciable interest has
been focused on the lattice-directed trajectories
of energetic positive! ~* and negative®~® particles.
In a lattice-directed trajectory, the direction of
motion of the projectile particle is aligned with
the lattice atoms in a simple crystallographic di-
rection. Therefore, the Fourier spectrum of the
interaction between the lattice atoms and the pro-
jectile particle will contain significant terms of
frequencies around integral multiples of the in-
teraction frequency. These terms have to be con-
sidered in the derivation of the transition prob-

This effect is considered in terms of the quantal time-dependent
Its magnitude is estimated using the classical theory of radiation.

abilities between the various quantum states of the
energetic projectile particle. 8-1® If we consider
the projectile particle free except for the periodic
perturbation of the interaction with the lattice
atoms, we can apply quantal time-dependent per-
turbation theory to obtain these transition prob-
abilities. As is well known, !! we will obtain a
strongly increased transition probability to states
which differ in energy from the initial state by an
amount shy, where s is an integer, & is Planck’s
constant, and ¥ is the frequency of the interaction.
For channelled or blocked heavy ions, these
energies shy will be of the same order of magnitude
as the energy differences between electronic ex-
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cited states of the heavy ion. When two such ex-
cited states differ in energy by a multiple of &y,
large differences can be expected in the distri-
butions over the various excited states of the
channelled and the randomized heavy ions. For
energetic (2 10° eV) positrons and electrons in
lattice-directed trajectories, these frequencies
lie in the brehmsstrahlung range and we expect
that these frequencies will dominate the brehms-
strahlung spectrum.

We will derive an expression for the experi-
mentally measured wavelengths of these lattice-
enhanced radiations and make an estimate of the
magnitude of the effect for B particles in lattice-
directed trajectories.

II. WAVELENGTHS OF LATTICE-ENHANCED RADIATIONS

In considering the motion of a sufficiently local-
ized energetic B particle parallel to a low-index
row, we can treat the interaction with the lattice
atoms as a perturbation. Moreover, the total
time spent in the crystal travelling along the row
is much larger than the time between successive
interactions from neighboring lattice sites. Hence
we may apply quantal time-dependent perturbation
'theory.

If d is the interatomic spacing of the row under
consideration in the laboratory system and 2a is
the interatomic spacing in the reference frame
initially at rest with respect to the g particle, we
have

2a=d(1-p3'2 (1)

where B=v/c and c is the velocity of light in vacuo.
Hence the interaction frequency (v/2a) in the refer
ence frame initially at rest with respect to the
particle is given by .

v=Bc/d(L- B2, (2)

We can write the interaction potential between the
B particle and the lattice atoms in the row as

1

W)= Z (Asez”"s“+A;‘e'2”"t) . (3)
s=1

Let the B particle at the time #=0 be in a wave
state %) with energy E=0, and let the B particle
be in a wave state |k,) with energy E’ after ab-
sorption of a virtual photon® of energy hY,. The
probability of a transition from |%,) to |k,) during
the time ¢ is, to the first order, given by!!

h-z

5 (Gl [y [* emiowmor ap
s=1

+ (| A%| Ry) fote-znme-rs)t'dt,) 2 (4)

This transition probability will be very small ex-
cept for transitions with
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Yo=VS . (5)

Next, the B particle will recoil after emission of
a photon ¥'. As is well known from the Compton
effect,

Y <Ye, (6)

but for the energies considered we can safely ap-
proximate ¥’ =y,. Hence, the radiative transitions
with frequencies around ¥s will dominate the ra-
diation spectrum of the g particle.

To obtain the values 7, of these frequencies 7,
in the laboratory system, we transfer from the
reference frame initially at rest with respect to
the B particle to the laboratory system. Because
the atomic row is moving with a velocity (- Bc¢)
with respect to the former reference frame, we
have!?

Y1 =ve[(1 +B cosb,)/(1 - p3)1/2] . -

Here, the subscript ! refers to the value of the
parameter in the laboratory system, and the sub-
script e refers to the value of the parameter in
the reference frame initially at rest with respect
to the B particle. The angle between the direction
of motion of the row and the photon in the latter
reference system is denoted by 6,. We have'?

cosf,=(cosb, - B)/(1 - B cosh,) . (8)
Hence, substituting Eq. (8) in Eq. (7), we obtain

V1=7[(1 - B/2/(1 - B cosh,)] . ©)
Finally, from y,=vs and Eqs. (2) and (9),

¥;=sBc/d(1 -8 cosb,) . (10)

The brehmsstrahlung of an energetic 8 particle
traversing the single crystal in a lattice-directed
trajectory along a row of interatomic spacing d
will thus be strongly peaked at the wavelengths A
with

Ag=c¢/y;=d(1~-B cosb,)/sB . (11)

In the nonrelativistic limit, this reduces to
Ae=d/sB . (12)

III. CLASSICAL ESTIMATE QOF THE MAGNITUDE OF LATTICE-
ENHANCED RADIATION

To simplify the calculations we will use non-
relativistic dynamics and assume that the g particle
moves in a rectilinear fashion through the inter-
action potential V(#) of a single-lattice atom. The
total energy S(y, ¢) radiated at the time ¢ of the
passage, illustrated in Fig. 1, is given by

202 (d2y \?
S0, t)—@'(gp‘) ) (13)
where e is the charge of the g particle. Defining
a=d/2, we obtain the energy S(y) radiated per
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=alu(f)f df/2epBc .
r Hence
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- [ RS ar . am
A brehmsstrahlung spectrum corresponding to
) a random motion through the crystal (or a motion
a - a > a -

e
LA

FIG 1. Scattering of an energetic B particle by a
lattice atom.

passage
s@):zﬁ“"k Sy, t) dt

@/Be  2g? dv(r) )2
=2J W(W dt, (14)

where m is the particle rest mass. Using an un-
screened Coulomb potential to facilitate integra-
tion, we have

4¢8 fa /B¢ 2 52
S0)=532 0 [y*+(a—pBet)T2at, (15)
to obtain, after defining f=v/a,

S(f)=K[(1/f*+1%) + (tan™ 1) /F%] , (16)

where K=4Xx10"% ¢rg/passage. .

Let a homogeneous beam of 8 particles of total
beam current I travel into a single crystal aligned
with a low-index direction of interatomic spacing
2a. Assume that such a B particle of initial im-
pact parameter fa travels (nearly) parallel to that
low-index direction over a distance u(f). Then
the total energy radiated per second at the lattice-
enhanced frequencies by these lattice-directed g
particles can be approximated by

s=J," PS() daf .

Here, u and / are the upper and lower limits, re-
spectively, of f for which the B particle will be in
a lattice-directed trajectory. The function P(f) df
is the number of passages per second of a lattice
atom by a lattice-directed B particle at an impact
parameter between af and a(f +df). I N{f) df is

the number of lattice-directed B particles traveling
at a distance from a row axis in the low-index di-
rection between af and a(f +df), we have

P(f) df = (Bc/2a)N(f) df ,
N(f) df = I/e)[ u(f)/Bc][2maf d(af)/4a?]

through a random material) will be generated by
the initially random B particles and those B par-
ticles with u(f) <8, where 6 is the minimum dis-
tance to be travelled through the crystal before
emission. If we define

F(f) df=N{) df/ [[" N(f)df ,
we find that the fraction F with

F:fo’F(f)df+fu‘F(f)df

of the B particles will be randomized upon entering
the crystal. The energy S, radiated by these S
particles is given by

$1= [ PipSe) af

where P;(f) df is the average number of passages
per second of a lattice atom by such an initially
random B particle at an impact parameter between
af and a(f +df). Assume that such a g particle
travels an average distance m 6 through the crys-
tal with an average collision frequency #(8c/2a),
then

2mnl

Pl(f) df: dea

Fo df,

* where m and » are numbers of order 1. Hence

1
s, = 2l / FS(f) df . (18)

4ea b

We obtain the second contribution to the random
brehmsstrahlung spectrum by the B particles that
have left their lattice-directed trajectories from

So= [ Palf)S() df .

Here
2mnl

- 5— ’ ’ ’
Pof) ar=22 [ Lo wIFG) ar o,
and the integral is taken over those ranges of f’
with u(f’)<6and I<f’ <u. The total “background”
brehmsstrahlung S, is thus given by

SO = Sl + Sz, ;

hence,

s _2mn1[1{5F+f [6—u(f)IFF) ar'}s() df
07 4ea Jo e (15;)

Finally, we obtain from Eqgs. (17) and (19) the ratio
of the energies radiated in the two components of
the total brehmsstrahlung spectrum:

S @/2mn)[} fu(f)S(f)df
So ~JHOF + [.[6 = n(7NIF (/)af 'y S(f) df

(20)
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Let us determine the value of (S/Sy) for a few
cases. For a channelled positron in a transmis-
sion experiment, we can write u(f’)= 06 for all
l<f’<u, and find S;=0. Furthermore, since
u=1and [JF(f’) df’ =1%, we obtain from Eq. (20)

S - g f fS(f)df/ f S() df .

Observing that the terms in the first integral of
Eq. (21) are f times smaller than the correspond-
ing terms in the second integral of Eq. (21), while
f=1, we obtain from Eq. (21)

S/Sy = w/2mnl .

(21)

(22a)

For (100) axial channelling in a simple cubic lattice,
we have n'=5.4 if a scattering is assumed to take
place when the projectile passes the lattice site
within one-fifth of the interatomic spacing. Under
those conditions we can approximate m =1.7 and
1=0.2, and obtain

S/Sy225. (220)

Furthermore, for a perfectly collimated beam of
1-MeV positrons, we get from Eq. (17)

S~2x10" J/sec pA . (22¢)

In a transmission experiment with energetic elec-
trons, the electrons will be blocked by the low-
index direction and only for sufficiently thin crys-
tals will the contribution of S, to S, be negligible.
For a thickness 6= 2600 A and 1.7-MeV electrons
along the (111) axis in Au, we obtain (using the re-
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sults of a computer simulation of the electron tra-
jectories®)

S/Sy ~5. (23)

The values of ! and # will be difficult to estimate

in a reflection or implantation experiment with
either type of g particle. Only for small penetra-
tion or implantation depths, will u(f) be larger than
6 and in both cases F will not be very small. How-
ever, the largest part of the lattice-enhanced ra-
diation will be emitted in the forward direction
(nearly) parallel to the direction of motion of the

B particles, “ie. , along the low-index direction.
Hence, we can experimentally increase the ratio
S/S, be selecting the appropriate detection direc-
tion of the brehmsstrahlung.

IV. CONCLUSIONS

The brehmsstrahlung spectrum of energetic p
particles travelling in lattice-directed trajectories
will be strongly peaked around integral multiples
of the frequency of the interaction between the 8
particle and the individual lattice atoms. The ef-
fect should be readily observable under the appro-
priate experimental conditions.
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